

State Space Model Meets Transformer: A New Paradigm for 3D Object Detection

Chuxin Wang^{1,2} Wenfei Yang^{1,2} Xiang Liu⁴ Tianzhu Zhang^{1,2,3}

¹University of Science and Technology of China ²National Key Laboratory of Deep Space Exploration, Deep Space Exploration Laboratory ³Hainan Aerospace Technology Innovation Center ⁴Dongguan University of Technology

Indoor 3D Object Detection

Perceive and locate 3D objects in the real world

Challenges and Contributions

DETR-based models show **limited improvement** in later layers due to **fixed scene point features**, while our DEST dynamically updates them, achieving significant gains.

- Transformer decoder solely updates query point features.
- Can we design a State Space Model to replace it, enabling simultaneous updates of scene and query point features?

- Query point features are modeled as **system states**, while scene point features serve as system inputs at different time steps.
- ISSM modifies SSM parameters (Δ_t, B_t, C_t) to be dependent on system states and introduces a spatial correlation module to capture relationships between state points and scene points.

(B) ISSM-based Decoder Block

• We design the ISSM-based decoder tailored to the characteristics of 3D point clouds, fully harnessing the potential of the ISSM for point cloud object detection.

K' Boxes

Experiments

(A) Results on ScanNet V2 and SUN RGB-D datasets

Method	PGB	ScanNe	et V2(H)	ScanNe	t V2(A)	SUN RO	GB-D(H)	SUN RO	GB-D(A)
	KOD	AP_{25}	AP_{50}	AP_{25}	AP_{50}	AP_{25}	AP_{50}	AP_{25}	AP_{50}
VoteNet (Qi et al., 2019)	X	62.9	39.9	-	-	57.7	-	-	-
HGNet (Chen et al., 2020)	X	61.3	34.4	-	-	61.6	-	-	-
3D-MPA (Engelmann et al., 2020)) X	64.2	49.2	-	-	-	-	-	-
MLCVNet (Xie et al., 2020)	X	64.5	41.4	-	-	59.8	-	-	-
GSDN (Gwak et al., 2020)	X	62.8	34.8	-	-	-	-	-	-
H3DNet (Zhang et al., 2020)	X	64.4	43.4	-	-	60.1	39.0	-	-
BRNet (Cheng et al., 2021)	X	66.1	50.9	-	-	61.1	43.7	-	-
3DETR (Misra et al., 2021)	X	65.0	47.0	-	-	59.1	32.7	-	-
VENet (Xie et al., 2021)	X	67.7	-	-	-	62.5	39.2	-	-
GroupFree(S)(Liu et al., 2021)	X	67.3	48.9	66.3	48.5	63.0	45.2	62.6	44.4
GroupFree(L)(Liu et al., 2021)	X	69.1	52.8	68.6	51.8	-	-	-	-
RBGNet (Wang et al., 2022b)	X	70.6	55.2	69.9	54.7	64.1	47.2	63.6	46.3
HyperDet3D (Zheng et al., 2022)	X	70.9	57.2	-	-	63.5	47.3	-	-
LeadNet (Wang et al., 2023)	X	68.0	51.3	-	-	63.4	45.8	-	-
FCAF3D (Rukhovich et al., 2022)	1	71.5	57.3	70.7	56.0	64.2	48.9	63.8	48.2
TR3D (Rukhovich et al., 2023)	\checkmark	72.9	59.3	72.0	57.4	67.1	50.4	66.3	49.6
CAGroup3D (Wang et al., 2022a)	1	75.1	61.3	74.5	60.3	66.8	50.2	66.4	49.5
VDETR (Shen et al., 2024)	1	77.4	65.0	76.8	64.5	67.5	50.4	66.8	49.7
VDETR(TTA) (Shen et al., 2024)	1	77.8	66.0	77.0	65.3	68.0	51.1	67.5	50.0
GroupFree(S)(Liu et al., 2021)	X	67.3	48.9	66.3	48.5	63.0	45.2	62.6	44.4
+ DEST(ours)	X	68.8(+1.5)	53.2(+4.3)	67.9(+1.6)	52.7(+4.2)	65.3(+2.3)	48.4(+3.2)	64.7(+2.1)	47.6(+3.2)
GroupFree(L)(Liu et al., 2021)	X	69.1	52.8	68.6	51.8	-	-	-	-
+ DEST(ours)	X	71.3(+2.2)	58.1(+5.3)	70.5(+1.9)	56.8(+5.0)	-	-	-	-
VDETR (Shen et al., 2024)	1	77.4	65.0	76.8	64.5	67.5	50.4	66.8	49.7
+ DEST(ours)	1	78.5(+1.1)	66.6 (+1.6)	77.8(+1.0)	66.2(+1.7)	68.4(+0.9)	51.8(+1.4)	67.4(+0.8)	50.9(+1.2)
VDETR(TTA) (Shen et al., 2024)	1	77.8	66.0	77.0	65.3	68.0	51.1	67.5	50.0
+ DEST(ours)	1	78.8(+1.0)	67.9(+1.9)	78.3(+1.3)	66.9(+1.6)	69.2(+1.2)	52.2(+1.1)	68.8(+1.3)	51.6(+1.6)

(B) Visual Comparison on ScanNet V2 and SUN RGB-D datasets

Our DEST-based methods **significantly outperform** the baseline methods on both ScanNet V2 and SUN RGB-D datasets.