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Semi-Supervised 3D Object Detection

objects from a point cloud.

Semi-supervised learning: Train a model
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with a small number of labeled data and a large
number of unlabeled data.
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each side? Global scores like IoU are insufficient for
pseudo-label selection. Red represents pseudo-labels
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Our Approach
(a) Side-aware 3D Object Detection

Side-aware Bounding Box Parameterization: For convenience, we denote the top,
down, left, right, front and back sides of a bounding box as:

s € B={tdlLlrf,b}
The model predicts the distribution P(s) defined over the interval [S;,in, Smax]- Then
we discretize the continuous distribution by dividing the interval into N bins
(Sg,S1, * *»Sy—1). The predicted value S of s can be calculated as:

N-1
§ = z P(s = s;)s;
i=0

Uncertainty Estimation Module (UEM):
We design side of interest (SOI) pooling
to obtain the geometric features Fop ,

then we concatenate the corresponding ~ seedroims
statistics to obtain the distribution

properties F;i¢¢. Finally, we fuse the
geometric features and distribution
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Uncertainty Regression Loss:

To guide the training of the UEM, we introduce the uncertainty regression loss. We
use the absolute deviation of the predicted side location § and ground-truth y; to
compute the uncertainty label y¥* = MIN(a|y, — §|, 1.0). The uncertainty regression
loss can be computed as the mean square error between yg* and .

(b) Soft Pseudo-Label Selection

The Soft Pseudo-Label Selection (soft-PLS) consists of three components: Category
specific filter, [oU-guided NMS with low-half strategy, side-aware weight assignment.

Category specific filter: Following FlexMatch, we use category-specific thresholds
to filter pseudo-labels.

IoU-guided NMS with low-half strategy: To suppress noise in pseudo-labels caused
by duplicated bounding box predictions, we utilize the IoU-guided non-maximal
suppression with low-half keeping strategy to eliminate redundant pseudo-labels.

Side-aware weight assignment: We first evaluate the localization quality of each
side and compute the quality score g, = e ~B%s of each side. S is a scaling value.
When supervising the student model, we use the quality scores Q = {q5|s € B} of the
pseudo-label to weight the loss function as follows:

Lpox = qpLlioy(B) + Z(CISLreg(S))

SEB
In this way, we reduce the interference of poorly localized sides in model training.
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On Indoor Benchmarks
Table 1. Results on ScanNet Val dataset under different ratios of labeled data. Results are reported as mean + standard deviation
across 3 runs with random data splits, * represents the re-implemented results on ScanNet 50% labeled data.
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Model 5% 10% 20% 50%" 100%
mAPQ5 { mAP50 mAPQ5 { mAP5g mAng, l mAP50 Il’lAng. l mAP50 mAng, { mAP50
VoteNet [19] | 27.940.5 | 10.840.6 | 36.94+1.6 | 18.2+1.0 | 46.9+£1.9 | 27.5£1.2 | 56.1£1.1 | 36.5£0.6 | 57.8 36.0
SESS [37] | 32.0£0.7 | 14.4+0.7 | 39.54+1.8 | 19.8+1.3 | 49.6x1.1 | 29.0=1.0 | 57.2+1.2 | 37.7+£0.7 | 61.3 39.0
3DIoU [30] | 40.0£0.9 | 22.5+£0.5 | 47.2+£04 | 283+£1.5 | 52.8£1.2 | 35.2£1.1 | 59.8£0.7 | 41.2£0.5 62.9 42.1
Ours 40.5+1.1 | 23.8+0.8 | 48.8+0.9 | 31.1+1.1 | 54.5+0.8 | 37.3+0.5 | 61.5+1.4 | 43.1+0.8 | 63.8 44.1

Table 2. Results on SUNRGB-D Val dataset under different ratios of labeled data. Results are reported as mean + standard deviation
across 3 runs with random data splits, * represents the re-implemented results on SUNRGB-D 50% labeled data.

Model 5% 10% 20% 50%* 100%
0 mApga ‘ mAP,g.o mAng, | mAP5U mAng, ‘ mApao mAP25 ‘ mAPm mAP25 ‘ mApao
VoteNet [19] | 29.94+1.5 | 10.5+£0.5 | 389+0.8 | 17.2+1.3 | 45.7+0.6 | 22.5+0.8 | 55.3+1.1 | 31.940.8 58.0 33.4
SESS [37] 342420 | 13.1+1.0 | 42.14+1.1 | 20.94+0.3 | 47.14+0.7 | 24.5+1.2 | 56.2+0.8 | 33.7+0.7 60.5 38.1
3DIoU [30] | 39.04+1.9 | 21.141.7 | 45.5+1.5 | 28.8+0.7 | 49.7+0.4 | 30.9+0.2 | 58.3+0.9 | 35.6+£04 | 61.5 41.3
Ours 41.1+1.2 | 21.8+£1.8 | 47.4+0.8 | 29.2+1.2 | 53.4+0.9 | 31.2+1.3 | 60.1+0.4 | 37.8+0.8 62.7 42.1
ScanNet Dataset SUNRGB-D Dataset
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Table 3. Results on KITTI Val set under different ratios of labeled data. The results are reported as mean + standard deviation across
3 runs with random data splits.

Model mAP(1%) mAP(10%) mAP(20%) mAP(100%)
Car | Ped. | Cyc. Car | Ped. | Cyc. Car | Ped. | Cyc. | Car|Ped.|Cyc.

PV-RCNN [22]|73.1£0.2 | 21.4+11.1 | 28.0£6.0 | 80.7£1.0 | 50.0£3.2 | 60.5£4.7 | 82.4+0.2 | 52.4+1.5 | 65.8+1.3 | 82.5|58.1 | 73.5
3DIoU [30] |75.2x=1.8|32.9%16.1 |31.4+7.8|81.3+0.8|52.63+1.9|62.0x5.8|82.9+0.1 |54.5+1.4|67.4%+1.7|84.2|60.5|75.2
Ours 76.3+1.0 | 33.1£13.6 | 33.6+5.2 | 83.1+£0.5 | 54.2+1.9 | 65.3+3.6 | 84.1+0.2 | 57.8+1.5 | 70.8+0.5 | 85.3 | 60.9 | 76.3
Ground-truth Pseudo-label Uncertainty Value Ground-truth Pseudo-label Uncertainty Value
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Conclusion

 In this paper, we propose a side-aware framework with three specific designs: a probabilistic
parameterization method, an uncertainty estimation module, and a soft pseudo-label selection.

* To the best of our knowledge, our approach is the first to consider the quality of local sides for
pseudo-label filtering, enabling full exploitation and utilization of valid information in the model
prediction results for supervising student models.

* Experiment results indicate that our method outperforms state-of-the-art methods on two indoor
datasets and one outdoor dataset.
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